衛星大地測量作業二
計算衛星軌道及推導拉格朗日括號公式。
常見衛星周期
由萬有引力公式與圓周運動公式, 假設衛星軌道為圓,在軌道半徑已知下, 衛星繞地球的周期、速度是可以唯一確定的。
若衛星繞地球作圓周運動,需要的向心加速度為:
a = \frac{V^2 } R
衛星的向心加速度來源為引力, 引力加速度公式為:
a = \frac{G M} {R^2}
合併二式後,可以由軌道半徑推出衛星運動速度, 有運動速度與半徑即可推出周期:
\frac{V^2} R = \frac{G M} {R^2} \\
V^2 = \frac {G M} R \\
V = \sqrt \frac{G M}R \\
t = \frac{2 \pi R }V = \frac {2 \pi R^{1.5}} { \sqrt{G M} }
G 為萬有引力常數,M 為地球質量, 以地表 R = 6371km 時 a = g = 9.8 m/s² , G M = 397778481800000 m³/s² 。
衛星 | 軌道半徑 | 來源網址 | 周期 |
---|---|---|---|
Jason-3 | 7714.43km | https://podaac.jpl.nasa.gov/JASON3 | 6750.17s |
GRACE-follow-on | 6861km | https://gracefo.jpl.nasa.gov/resources/38/grace-fo-fact-sheet/ | 94.36s |
GPS satellite | 20200km | https://www.nasa.gov/directorates/heo/scan/communications/policy/GPS.html | 28601.33s |
BDs3 | 21500km | https://en.wikipedia.org/wiki/List_of_BeiDou_satellites#cite_note-gpsworld201501-3 | 31406.31s |
sentinel-1A | 7064km | https://sentinel.esa.int/web/sentinel/missions/sentinel-1/satellite-description/orbit | 5914.73s |
LAGEOS-2 | 5740km | https://lageos.cddis.eosdis.nasa.gov/ | 4332.39s |
GOCE | 6606km | http://www.esa.int/Our_Activities/Observing_the_Earth/GOCE/Satellite | 5348.93s |
拉格朗日括號
驗證下列公式:
[ \Omega , e ] = - [ e , \Omega ] =
- \frac { - n a^2 e cos(i) }
{ \sqrt { 1 - e^2 } }
\\
[ \omega , a ] = - [ a , \omega ] =
\frac { \sqrt {1 - e^2} n a } 2
使用 emacs-calc 進行符號微分, 以下是變數定義:
qq = [a * (cos(E) - ee);
a * sin(E) * sqrt(1 - ee^2);
0]
vqq = [a * n * sin(E) / (ee * cos(E) - 1);
a * cos(E) * n * sqrt(1 - ee^2) / (1 - ee * cos(E));
0]
r3o = [ [cos(o), -sin(o), 0],
[sin(o), cos(o), 0],
[0, 0, 1] ]
r1i = [ [1, 0, 0],
[0, cos(ii), -sin(ii)],
[0, sin(ii), cos(ii)] ]
r3w = [ [cos(o), -sin(o), 0],
[sin(o), cos(o), 0],
[0, 0, 1] ]
roiw = r3o * r1i * r3w
xyz = roiw * qq
vxyz = roiw * vqq
bracketoe = sum(
deriv(evalv(xyz_k_1), o) * deriv(evalv(vxyz_k_1), ee) -
deriv(evalv(vxyz_k_1), o) * deriv(evalv(xyz_k_1), ee),
k, 1, 3
)
bracketwa = sum(
deriv(evalv(xyz_k_1), w) * deriv(evalv(vxyz_k_1), a) -
deriv(evalv(vxyz_k_1), w) * deriv(evalv(xyz_k_1), a),
k, 1, 3
)
其中 o 為 Ω ,w 為 ω ,ee 為 e,ii 為 i。 微分的結果極長:
bracketoe
= ((a sin(E) sin(w) sqrt(1 - ee^2)
- a*(cos(E) - ee) cos(w)) sin(o)
- (a*(cos(E) - ee) sin(w)
+ a cos(w) sin(E) sqrt(1 - ee^2)) cos(ii)
cos(o))
((a ee cos(E) cos(w) n(a)
/ ((1 - ee cos(E)) sqrt(1 - ee^2))
+ a cos(E) n(a) sin(E) sin(w)
/ (ee cos(E) - 1)^2
- a cos(E)^2 cos(w) n(a) sqrt(1 - ee^2)
/ (1 - ee cos(E))^2) cos(ii) sin(o)
- (a cos(E)^2 n(a) sin(w)
sqrt(1 - ee^2) / (ee cos(E) - 1)^2
+ a ee cos(E) n(a) sin(w)
/ ((ee cos(E) - 1) sqrt(1 - ee^2))
+ a cos(E) cos(w) n(a) sin(E)
/ (ee cos(E) - 1)^2) cos(o))
+ ((a*(cos(E) - ee) cos(w)
- a sin(E) sin(w) sqrt(1 - ee^2)) cos(o)
- (a*(cos(E) - ee) sin(w)
+ a cos(w) sin(E) sqrt(1 - ee^2))
cos(ii) sin(o))
((a cos(E)^2 cos(w) n(a) sqrt(1 - ee^2)
/ (1 - ee cos(E))^2
- a cos(E) n(a) sin(E) sin(w)
/ (ee cos(E) - 1)^2
- a ee cos(E) cos(w) n(a)
/ ((1 - ee cos(E)) sqrt(1 - ee^2)))
cos(ii) cos(o)
- (a cos(E)^2 n(a) sin(w)
sqrt(1 - ee^2) / (ee cos(E) - 1)^2
+ a ee cos(E) n(a) sin(w)
/ ((ee cos(E) - 1) sqrt(1 - ee^2))
+ a cos(E) cos(w) n(a) sin(E)
/ (ee cos(E) - 1)^2) sin(o))
+ ((a ee cos(w) sin(E)
/ sqrt(1 - ee^2) + a sin(w)) cos(ii)
sin(o)
+ (a ee sin(E) sin(w) / sqrt(1 - ee^2)
- a cos(w)) cos(o))
((a n(a) sin(E) sin(w) / (ee cos(E) - 1)
+ a cos(E) cos(w) n(a) sqrt(1 - ee^2)
/ (1 - ee cos(E))) cos(ii) cos(o)
+ (a cos(w) n(a) sin(E)
/ (ee cos(E) - 1)
+ a cos(E) n(a) sin(w) sqrt(1 - ee^2)
/ (ee cos(E) - 1)) sin(o))
+ ((a n(a) sin(E) sin(w)
/ (ee cos(E) - 1)
+ a cos(E) cos(w) n(a) sqrt(1 - ee^2)
/ (1 - ee cos(E))) cos(ii) sin(o)
- (a cos(w) n(a) sin(E) / (ee cos(E) - 1)
+ a cos(E) n(a) sin(w) sqrt(1 - ee^2)
/ (ee cos(E) - 1)) cos(o))
((a ee sin(E) sin(w) / sqrt(1 - ee^2)
- a cos(w)) sin(o)
- (a ee cos(w) sin(E) / sqrt(1 - ee^2)
+ a sin(w)) cos(ii) cos(o))
bracketwa
= ((a*(ee - cos(E)) sin(w)
- a cos(w) sin(E) sqrt(1 - ee^2))
cos(o)
+ (a sin(E) sin(w) sqrt(1 - ee^2)
- a*(cos(E) - ee) cos(w)) cos(ii) sin(o))
(((cos(w) n(a) sin(E)
+ a cos(w) n'(a) sin(E)) / (ee cos(E) - 1)
+ (cos(E) n(a) sin(w) sqrt(1 - ee^2)
+ a cos(E) n'(a) sin(w)
sqrt(1 - ee^2)) / (ee cos(E) - 1)) cos(o)
- ((n(a) sin(E) sin(w)
+ a n'(a) sin(E) sin(w)) / (ee cos(E) - 1)
+ (cos(E) cos(w) n(a) sqrt(1 - ee^2)
+ a cos(E) cos(w) n'(a)
sqrt(1 - ee^2)) / (1 - ee cos(E))) cos(ii)
sin(o))
+ (((cos(w) n(a) sin(E)
+ a cos(w) n'(a) sin(E)) / (ee cos(E) - 1)
+ (cos(E) n(a) sin(w) sqrt(1 - ee^2)
+ a cos(E) n'(a) sin(w)
sqrt(1 - ee^2)) / (ee cos(E) - 1)) sin(o)
+ ((n(a) sin(E) sin(w)
+ a n'(a) sin(E) sin(w))
/ (ee cos(E) - 1)
+ (cos(E) cos(w) n(a) sqrt(1 - ee^2)
+ a cos(E) cos(w) n'(a) sqrt(1 - ee^2))
/ (1 - ee cos(E))) cos(ii) cos(o))
((a*(ee - cos(E)) sin(w)
- a cos(w) sin(E) sqrt(1 - ee^2))
sin(o)
+ (a*(cos(E) - ee) cos(w)
- a sin(E) sin(w) sqrt(1 - ee^2)) cos(ii)
cos(o))
+ ((n(a) sin(E) sin(w)
+ a n'(a) sin(E) sin(w)) / (ee cos(E) - 1)
+ (cos(E) cos(w) n(a) sqrt(1 - ee^2)
+ a cos(E) cos(w) n'(a)
sqrt(1 - ee^2)) / (1 - ee cos(E)))
(a*(cos(E) - ee) cos(w)
- a sin(E) sin(w) sqrt(1 - ee^2))
sin(ii)^2
+ ((a cos(w) n(a) sin(E)
/ (ee cos(E) - 1)
+ a cos(E) n(a) sin(w) sqrt(1 - ee^2)
/ (ee cos(E) - 1)) cos(ii) sin(o)
- (a n(a) sin(E) sin(w) / (1 - ee cos(E))
+ a cos(E) cos(w) n(a) sqrt(1 - ee^2)
/ (ee cos(E) - 1)) cos(o))
(((cos(E) - ee) cos(w)
- sin(E) sin(w) sqrt(1 - ee^2)) cos(o)
- ((cos(E) - ee) sin(w)
+ cos(w) sin(E) sqrt(1 - ee^2)) cos(ii)
sin(o))
- ((a n(a) sin(E) sin(w)
/ (1 - ee cos(E))
+ a cos(E) cos(w) n(a) sqrt(1 - ee^2)
/ (ee cos(E) - 1)) sin(o)
+ (a cos(w) n(a) sin(E) / (ee cos(E) - 1)
+ a cos(E) n(a) sin(w) sqrt(1 - ee^2)
/ (ee cos(E) - 1)) cos(ii) cos(o))
(((cos(E) - ee) cos(w)
- sin(E) sin(w) sqrt(1 - ee^2)) sin(o)
+ ((cos(E) - ee) sin(w)
+ cos(w) sin(E) sqrt(1 - ee^2)) cos(ii)
cos(o))
- ((cos(E) - ee) sin(w)
+ cos(w) sin(E) sqrt(1 - ee^2))
(a cos(w) n(a) sin(E) / (ee cos(E) - 1)
+ a cos(E) n(a) sin(w) sqrt(1 - ee^2)
/ (ee cos(E) - 1)) sin(ii)^2
之後代入數值驗證, E 也是事先算好代入:
# 虛擬碼
[w, o, a, M, E, ii, ee, GM] =
[0.9, 1.1, 12000000, 0.456413411439, 0.47, 0.3, 0.03, 397778481800000]
n 則是定義成 a 的函數。
ZFn
sqrt(GM) / a^1.5
最後與講義上的公式比較,二者大約相同, 代表符號微分正確。
[ω, a] = 2877.42825411
[Ω, e] = -1980999688.28