衛星大地測量作業二

計算衛星軌道及推導拉格朗日括號公式。

常見衛星周期

由萬有引力公式與圓周運動公式, 假設衛星軌道為圓,在軌道半徑已知下, 衛星繞地球的周期、速度是可以唯一確定的。

若衛星繞地球作圓周運動,需要的向心加速度為:

a = \frac{V^2 } R

衛星的向心加速度來源為引力, 引力加速度公式為:

a = \frac{G M} {R^2}

合併二式後,可以由軌道半徑推出衛星運動速度, 有運動速度與半徑即可推出周期:

\frac{V^2} R = \frac{G M} {R^2} \\
V^2 = \frac {G M} R \\
V = \sqrt \frac{G M}R \\
t = \frac{2 \pi R }V = \frac {2 \pi R^{1.5}} { \sqrt{G M} }

G 為萬有引力常數,M 為地球質量, 以地表 R = 6371km 時 a = g = 9.8 m/s² , G M = 397778481800000 m³/s² 。

衛星 軌道半徑 來源網址 周期
Jason-3 7714.43km https://podaac.jpl.nasa.gov/JASON3 6750.17s
GRACE-follow-on 6861km https://gracefo.jpl.nasa.gov/resources/38/grace-fo-fact-sheet/ 94.36s
GPS satellite 20200km https://www.nasa.gov/directorates/heo/scan/communications/policy/GPS.html 28601.33s
BDs3 21500km https://en.wikipedia.org/wiki/List_of_BeiDou_satellites#cite_note-gpsworld201501-3 31406.31s
sentinel-1A 7064km https://sentinel.esa.int/web/sentinel/missions/sentinel-1/satellite-description/orbit 5914.73s
LAGEOS-2 5740km https://lageos.cddis.eosdis.nasa.gov/ 4332.39s
GOCE 6606km http://www.esa.int/Our_Activities/Observing_the_Earth/GOCE/Satellite 5348.93s

拉格朗日括號

驗證下列公式:

[ \Omega , e ] = - [ e , \Omega ] =
- \frac { - n a^2 e cos(i) }
        { \sqrt { 1 - e^2 } }

\\

[ \omega , a ] = - [ a , \omega ] =
\frac { \sqrt {1 - e^2} n a } 2

使用 emacs-calc 進行符號微分, 以下是變數定義:

qq = [a * (cos(E) - ee);
      a * sin(E) * sqrt(1 - ee^2);
      0]
vqq = [a * n * sin(E) / (ee * cos(E) - 1);
       a * cos(E) * n * sqrt(1 - ee^2) / (1 - ee * cos(E));
       0]

r3o = [ [cos(o), -sin(o), 0],
  [sin(o), cos(o), 0],
  [0, 0, 1] ]
r1i = [ [1, 0, 0],
  [0, cos(ii), -sin(ii)],
  [0, sin(ii), cos(ii)] ]
r3w = [ [cos(o), -sin(o), 0],
  [sin(o), cos(o), 0],
  [0, 0, 1] ]
roiw = r3o * r1i * r3w
xyz = roiw * qq
vxyz = roiw * vqq

bracketoe = sum(
    deriv(evalv(xyz_k_1), o) * deriv(evalv(vxyz_k_1), ee) -
    deriv(evalv(vxyz_k_1), o) * deriv(evalv(xyz_k_1), ee),
    k, 1, 3
)
bracketwa = sum(
    deriv(evalv(xyz_k_1), w) * deriv(evalv(vxyz_k_1), a) -
    deriv(evalv(vxyz_k_1), w) * deriv(evalv(xyz_k_1), a),
    k, 1, 3
)

其中 o 為 Ω ,w 為 ω ,ee 為 e,ii 為 i。 微分的結果極長:

    bracketoe 
      = ((a sin(E) sin(w) sqrt(1 - ee^2) 
            - a*(cos(E) - ee) cos(w)) sin(o) 
           - (a*(cos(E) - ee) sin(w) 
      + a cos(w) sin(E) sqrt(1 - ee^2)) cos(ii) 
      cos(o)) 
          ((a ee cos(E) cos(w) n(a) 
      / ((1 - ee cos(E)) sqrt(1 - ee^2)) 
      + a cos(E) n(a) sin(E) sin(w) 
          / (ee cos(E) - 1)^2 
      - a cos(E)^2 cos(w) n(a) sqrt(1 - ee^2) 
          / (1 - ee cos(E))^2) cos(ii) sin(o) 
             - (a cos(E)^2 n(a) sin(w) 
      sqrt(1 - ee^2) / (ee cos(E) - 1)^2 
      + a ee cos(E) n(a) sin(w) 
          / ((ee cos(E) - 1) sqrt(1 - ee^2)) 
      + a cos(E) cos(w) n(a) sin(E) 
          / (ee cos(E) - 1)^2) cos(o)) 
          + ((a*(cos(E) - ee) cos(w) 
      - a sin(E) sin(w) sqrt(1 - ee^2)) cos(o) 
      - (a*(cos(E) - ee) sin(w) 
           + a cos(w) sin(E) sqrt(1 - ee^2)) 
          cos(ii) sin(o)) 
      ((a cos(E)^2 cos(w) n(a) sqrt(1 - ee^2) 
          / (1 - ee cos(E))^2 
          - a cos(E) n(a) sin(E) sin(w) 
      / (ee cos(E) - 1)^2 
          - a ee cos(E) cos(w) n(a) 
      / ((1 - ee cos(E)) sqrt(1 - ee^2))) 
         cos(ii) cos(o) 
         - (a cos(E)^2 n(a) sin(w) 
      sqrt(1 - ee^2) / (ee cos(E) - 1)^2 
      + a ee cos(E) n(a) sin(w) 
          / ((ee cos(E) - 1) sqrt(1 - ee^2)) 
      + a cos(E) cos(w) n(a) sin(E) 
          / (ee cos(E) - 1)^2) sin(o)) 
          + ((a ee cos(w) sin(E) 
      / sqrt(1 - ee^2) + a sin(w)) cos(ii) 
      sin(o) 
      + (a ee sin(E) sin(w) / sqrt(1 - ee^2) 
           - a cos(w)) cos(o)) 
      ((a n(a) sin(E) sin(w) / (ee cos(E) - 1) 
          + a cos(E) cos(w) n(a) sqrt(1 - ee^2) 
      / (1 - ee cos(E))) cos(ii) cos(o) 
         + (a cos(w) n(a) sin(E) 
      / (ee cos(E) - 1) 
      + a cos(E) n(a) sin(w) sqrt(1 - ee^2) 
          / (ee cos(E) - 1)) sin(o)) 
          + ((a n(a) sin(E) sin(w) 
      / (ee cos(E) - 1) 
      + a cos(E) cos(w) n(a) sqrt(1 - ee^2) 
          / (1 - ee cos(E))) cos(ii) sin(o) 
      - (a cos(w) n(a) sin(E) / (ee cos(E) - 1) 
           + a cos(E) n(a) sin(w) sqrt(1 - ee^2) 
      / (ee cos(E) - 1)) cos(o)) 
      ((a ee sin(E) sin(w) / sqrt(1 - ee^2) 
          - a cos(w)) sin(o) 
         - (a ee cos(w) sin(E) / sqrt(1 - ee^2) 
      + a sin(w)) cos(ii) cos(o))
    bracketwa 
      = ((a*(ee - cos(E)) sin(w) 
            - a cos(w) sin(E) sqrt(1 - ee^2)) 
           cos(o) 
           + (a sin(E) sin(w) sqrt(1 - ee^2) 
      - a*(cos(E) - ee) cos(w)) cos(ii) sin(o)) 
          (((cos(w) n(a) sin(E) 
      + a cos(w) n'(a) sin(E)) / (ee cos(E) - 1) 
      + (cos(E) n(a) sin(w) sqrt(1 - ee^2) 
           + a cos(E) n'(a) sin(w) 
      sqrt(1 - ee^2)) / (ee cos(E) - 1)) cos(o) 
             - ((n(a) sin(E) sin(w) 
      + a n'(a) sin(E) sin(w)) / (ee cos(E) - 1) 
      + (cos(E) cos(w) n(a) sqrt(1 - ee^2) 
           + a cos(E) cos(w) n'(a) 
      sqrt(1 - ee^2)) / (1 - ee cos(E))) cos(ii) 
      sin(o)) 
          + (((cos(w) n(a) sin(E) 
      + a cos(w) n'(a) sin(E)) / (ee cos(E) - 1) 
      + (cos(E) n(a) sin(w) sqrt(1 - ee^2) 
           + a cos(E) n'(a) sin(w) 
      sqrt(1 - ee^2)) / (ee cos(E) - 1)) sin(o) 
      + ((n(a) sin(E) sin(w) 
            + a n'(a) sin(E) sin(w)) 
           / (ee cos(E) - 1) 
           + (cos(E) cos(w) n(a) sqrt(1 - ee^2) 
      + a cos(E) cos(w) n'(a) sqrt(1 - ee^2)) 
      / (1 - ee cos(E))) cos(ii) cos(o)) 
      ((a*(ee - cos(E)) sin(w) 
          - a cos(w) sin(E) sqrt(1 - ee^2)) 
         sin(o) 
         + (a*(cos(E) - ee) cos(w) 
      - a sin(E) sin(w) sqrt(1 - ee^2)) cos(ii) 
             cos(o)) 
          + ((n(a) sin(E) sin(w) 
      + a n'(a) sin(E) sin(w)) / (ee cos(E) - 1) 
      + (cos(E) cos(w) n(a) sqrt(1 - ee^2) 
           + a cos(E) cos(w) n'(a) 
      sqrt(1 - ee^2)) / (1 - ee cos(E))) 
          (a*(cos(E) - ee) cos(w) 
         - a sin(E) sin(w) sqrt(1 - ee^2)) 
      sin(ii)^2 
          + ((a cos(w) n(a) sin(E) 
      / (ee cos(E) - 1) 
      + a cos(E) n(a) sin(w) sqrt(1 - ee^2) 
          / (ee cos(E) - 1)) cos(ii) sin(o) 
      - (a n(a) sin(E) sin(w) / (1 - ee cos(E)) 
           + a cos(E) cos(w) n(a) sqrt(1 - ee^2) 
      / (ee cos(E) - 1)) cos(o)) 
      (((cos(E) - ee) cos(w) 
          - sin(E) sin(w) sqrt(1 - ee^2)) cos(o) 
         - ((cos(E) - ee) sin(w) 
      + cos(w) sin(E) sqrt(1 - ee^2)) cos(ii) 
             sin(o)) 
          - ((a n(a) sin(E) sin(w) 
      / (1 - ee cos(E)) 
      + a cos(E) cos(w) n(a) sqrt(1 - ee^2) 
          / (ee cos(E) - 1)) sin(o) 
      + (a cos(w) n(a) sin(E) / (ee cos(E) - 1) 
           + a cos(E) n(a) sin(w) sqrt(1 - ee^2) 
      / (ee cos(E) - 1)) cos(ii) cos(o)) 
      (((cos(E) - ee) cos(w) 
          - sin(E) sin(w) sqrt(1 - ee^2)) sin(o) 
         + ((cos(E) - ee) sin(w) 
      + cos(w) sin(E) sqrt(1 - ee^2)) cos(ii) 
             cos(o)) 
          - ((cos(E) - ee) sin(w) 
      + cos(w) sin(E) sqrt(1 - ee^2)) 
      (a cos(w) n(a) sin(E) / (ee cos(E) - 1) 
         + a cos(E) n(a) sin(w) sqrt(1 - ee^2) 
             / (ee cos(E) - 1)) sin(ii)^2

之後代入數值驗證, E 也是事先算好代入:

# 虛擬碼
[w, o, a, M, E, ii, ee, GM] = 
[0.9, 1.1, 12000000, 0.456413411439, 0.47, 0.3, 0.03, 397778481800000]

n 則是定義成 a 的函數。

ZFn
sqrt(GM) / a^1.5

最後與講義上的公式比較,二者大約相同, 代表符號微分正確。

[ω, a] = 2877.42825411
[Ω, e] = -1980999688.28